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Abstract We develop a numerical analysis of the buoyancy driven natural convection of a fluid
n a three dimensional shallow cavity (4 -1-1) with a horizontal gradient of temperature along
the larger dimension. The fluid is a liquid metal (Prandtl number equal to 0. 015) while the
Grashof number (Gr) varies in the range 100,000-300,000. The Navier-Stokes equations in
vorticity-velocity formulation have been integrated by means of a linearized fully implicit scheme.
The evaluation of fractal dimension of the attractors in the phase space has allowed the detection
of the chaotic regime. The Ruelle-Takens bifurcation sequence has been observed as mechanism
for the transition to chaos: the quasi periodic regime with three incommensurate frequencies is
the instability mechanism responsible for the transition to chaos. Physical experiments confirm
the existence of this scenario.

1 Introduction

Buoyancy driven natural convection of liquid metals has relevance in a wide
range of engineering and industrial applications such as crystal growth, glass
manufacturing, welding and material processing. In many cases the liquid
material is enclosed in a rigid parallelepipedic box with a horizontal gradient of
temperature which induces the convective flow.

It is well known that the main parameters which drive the phenomenon are
the Prandtl number (Pr) and the Grashof number (G7). Liquid metal buoyancy
driven convection (in the absence of surface tension driven flow) at low values
of Gr is laminar and steady. However, as Gr is increased the convective flow is
known to become time-dependent and oscillatory (Roux, 1990). Experimental
evidence of this phenomenon in molten gallium is given by Hurle et al (1974).
Experimental results by Hart (1972), Hung and Andereck (1990) and Wang et
al. (1990) also clearly show that there is a transition from steady to unsteady
flow. This behaviour can have a serious influence on the relevant applications.
For instance, in the Czochralski or Bridgman technique for the artificial crystal
growth, the melt material undergoes convective motions due to the difference
between liquid and solid temperature. The oscillatory instabilities of the melt
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Figure 1.
Scheme of the
computational domain

flow are the main reason of in homogeneities in the final product (Hurle, 1983).
In the absence of gravity, it is also possible to have convective instabilities
driven by surface tension effects. This problem has been extensively studied by
Lebon (1984) as well as others.

Many successful efforts have been done for a detailed study of two
dimensional problems (careful studies are described in Winters (1988), Pulicani
et al. (1990), Ben Hadid and Roux (1990) and many others). From a rough
comparison with the mathematical and numerical studies of the Benard
problem (vertical thermal convection), there is a fundamental difference, that is
the absence for the present problem of an analytical physically meaningful
solution to start the flow bifurcation pattern. Actually pure conduction is here
unstable whereas in the Benard case it is the exact solution from which departs
the one-cell flow configuration (first bifurcation point) (Drazin and Reid, 1985).
Then in the Benard flow, linear and nonlinear stability analysis have been
based on an unambiguous startup, whilst the results by stability analysis of the
horizontal thermal convection flow are obtained around some initial
approximated solution calculated through asymptotic techniques (Cormack ef
al., 1974; Georgescu and Mansutti, 1998; 1999). Other mathematical treatments
carefully developed can be found in Gershuni et al. (1992), where the hypothesis
is quite restrictive. This picture suggests that for this flow the most appropriate
studying tool is the numerical simulation. However for the inadequacy of
computational resources the study of three dimensional flows has been limited
again. Only few results are available on some steady flow configurations due to
combined buoyancy and thermocapillary effects (Berhnia et al., 1995; Gianji et
al., 1998).

The aim of this work is the study of the flow in a shallow three dimensional
box (4-1-1), whose smaller vertical walls are rigid, isothermal and held at
different values of temperature, while the other walls are rigid and insulated
(Figure 1). The box is filled with a liquid metal (Prandtl number equal to 0. 015).
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The Grashof number has been varied in a wide range, in order to observe the
transition from steady state to the periodic regime, and from this to the non-
periodic one (chaos).

Although there is not a scientific definition of chaos, our common
experience is related with some of its typical properties, the most
representative of which is the difficulty in the predictability of the results: a
chaotic system loses the memory of itself or, in other words, the knowledge
of the status of the system for a finite time interval does not allow us to
foresee its further evolution. The power spectrum of a chaotic regime is
continuous. A real difficulty is that a Fourier spectrum which looks
continuous cannot be automatically attributed to a chaotic signal, because it
can be also representative of a quasi-periodic signal with a very high
number of frequencies (white noise). In the first case, a completely
deterministic description of the system can be given because chaos,
although unpredictable, is governed by a set of well known equations
(Lorenz, 1963): this means that two phase trajectories (representative of the
evolution of a system) never can intersect themselves or, in other words, a
chaotic system, starting from a fixed state, can evolve in a univocal way. On
the other hand, if we are dealing with a white noise signal, only a
probabilistic insight can be achieved with the current state of knowledge.
Therefore, the Fourier analysis is not able to characterize a chaotic signal;
for this reason, a non linear dynamics technique, such as the evaluation of
fractal dimension of the attractors in the phasespace, has also been used in
order to quantify and detect the chaotic state of the system.

Even if a lot of work has also been done, the transition to chaos still
remains an open problem and several transition mechanisms have been
detected, both numerically and experimentally (Gollub and Benson, 1980;
Guzman and Amon, 1996; Bucchignani and Stella, 1998). In this work, at
Gr = 205,000 the first Hopf bifurcation is observed when a periodic regime
stems from a steady one; then one of the most common sequences of
bifurcations has been detected and deeply analyzed: the Ruelle-Takens route,
involving two Hopf bifurcations, leading respectively to a quasi periodic
regime with two frequencies at Gr = 206,000 and from this to a quasi
periodic regime with three frequencies Gr = 215,000. This last regime,
according to the Newhouse-Ruelle-Takens theorem (Newhouse et al., 1978), is
not stable and immediately degenerates to a chaotic flow. It is worth noting
that all the bifurcations have been observed in a limited range of values of Gr,
205,000 < Gr < 215,000 highlighting a sudden transition from the steady
state to chaos.

The study has been conducted by direct numerical simulations, using a fully
implicit parallel code based on the vorticity-velocity formulation of the Navier-
Stokes equations, assuming the Boussinesq approximation to be valid. The
mathematical model is described in section 2. The numerical discretization and
the solution method are explained in section 3. A finite difference scheme has
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been adopted and a preconditioned Bi-CGSTAB algorithm is used to solve the
linear systems arising from the discretization (van der Vorst, 1992). In section 4
results are presented and discussed.

2 Mathematical formulation

2. 1 Goverming equations

The Navier-Stokes equations for an incompressible Newtonian fluid with the
Boussinesq approximation are formulated in terms of vorticity w velocity u =
(#, v, w) and temperature 6. The following non-dimensional form is adopted:

%+ Gr'?V x (w x u) = V2w — Gr'/?V x <0§> (1)
ot lg]
Viu=-Vxuw (2)
90 1/2 2
Prg—i—P%Gr (u-V)o =V-o. (3)
The vorticity w is defined as usual:
w=Vxu 4)
We remember that the non-dimensional parameters G and Pr are defined as:
3
o GATH (v
1% K

in which g is the gravitational acceleration, 3 is the coefficient of thermal
expansion, H is the height of the box, AT is the temperature difference
between hot and cold walls, « the thermal diffusivity and v is the kinematic
viscosity. The underlying reference quantities are: u* = Gr'/?v/H (velocity
reference), +* = H?/v (time reference), [* = Gr'/?H (length reference) and
0* = AT (temperature reference).

The standard conservative form is adopted for the convective terms in the
vorticity transport equation in order to conserve exactly the mean vorticity as
prescribed by the Stokes theorem. This contributes to avoiding possible
numerical inconsistencies. The vertical direction has been assumed coincident
with the y axis.

2. 2 Boundary conditions

The domain considered is a three-dimensional box whose dimensions are:
L,=4H,=1,L, =1 (see Figure 1). The formulation used here allows a very
simple way of applying the boundary conditions:

the boundary condition associated with equation (1) is the vorticity
definition (4) written on the boundary. Due to the time discretization
scheme used, this boundary condition is updated and enforced at each



current time step. This procedure contributes to the correct coupling
between the kinematic and the dynamic parts of the problem;

+ the boundary conditions associated with the elliptic velocity equations
(2) are the velocity components #, v and w enforced to be zero on the
walls.

+ the boundary conditions associated with the energy equation are:

0=0 {x=0
=1 {x=1L,
y=0
%:0 y=Hy
on z=0
z=1,

3 Solution procedure

3.1 Numerical model

The governing equations (1), (2), (3) together with the proper boundary
conditions are discretized by using finite difference approximations. Spatial
derivatives are discretized on a uniform mesh through central second-order
differences while time derivatives are discretized through three-point second-
order backward differences.

By the chosen finite difference schemes, the discrete model ensures
maximum accuracy by a staggered variable location. For this purpose the
MAC scheme, originally built for the (u, #) formulation by Harlow and Welch
(1965), has been adapted to the present (u,w, #) formulation. In general when
each velocity component is evaluated at the middle of the faces of the
computational cell which are orthogonal, the mass conservation law at the
discrete level can be satisfied up to meet the round-off error. In a similar way,
by evaluating the vorticity components at the mid-point of the edges of the
computational cell which are parallel, the natural property of solenoidality of
the vorticity can be met at the discrete level up to round off error.
Furthermore, in our model staggering of the variables allows to discretize the
equation (2) in a “clean” way without any need of averaging. On the contrary,
in discretizing the equation (1), averaging is necessary for the treatment of the
advective term V x (w x u), where the product w x u is here averaged in the
whole (Guj and Stella, 1993). In this way the resulting discrete equation is
consistent with the implicit property of solenoidality of the vorticity field
expressed in discrete form.

The computation of the numerical solutions has been performed by a time
dependent algorithm. A true transient procedure requires particular care
when used together with the vorticity-velocity formulation. In fact the
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continuity equation is imposed only in an implicit way by dropping the term
Vi in the equations (1, (2), (3) so that mass conservation and definition of
vorticity could be violated if good coupling among the full set of the
equations is not ensured. Then the time integration has been executed by
means of a fully implicit numerical-scheme that has been afterwards
linearized through the “frozen coefficients” technique (Stella and
Bucchignani, 1996).

In this way at each time step our original system of partial differential
equations gives rise to a large linear system of equations of the type

Ax=0b

where x is the unknown vector and b is the known vector. The coefficient
matrix A has a large sparse structure. The solution of this linear system via a
direct method is not recommended due to the size of the problem, so that an
iterative procedure has been adopted: a variant of preconditioned conjugate
gradient is proposed. This approach has the advantage to allow a great
flexibility in writing the discretized form of numerical model. We have used a
parallel implementation of the Bi-CGSTAB algorithm (van der Vorst, 1992;
Bucchignani and Stella, 1995), because of its numerical stability and speed of
convergence. Although, from a theoretical point of view, iterative methods can
be used without preconditioning the linear systems of equations, the use of a
preconditioning technique is, in many practical applications, essential to fulfil
the convergence and stability requirements of the iterative procedure itself. The
aim of the preconditioner is to convert the original linear system to an
equivalent but better-conditioned system. This consists of finding a real matrix
C such that the new linear system

ClAx=C1b

has (by design) better convergence and stability characteristics than the
original system. It is obvious that the matrix C must be chosen carefully: it
should be close to the inverse of A, but easy to invert to avoid increased
computational cost. The ILU factorization is one of the most widely used
preconditioners: C is defined as the product LU of a lower (L) and an upper
(U) triangular matrix generated by a variant of the Crout factorization
algorithm: only the elements of A that are originally non-zero are
factorized and stored. In this way the sparsity structure of A is completely
preserved. However, ILU cannot be efficiently implemented on a
distributed memory machine. In order to overcome these problems, the
BILU preconditioner has been proposed in Stella et al. (1993). It is based on
a block decomposition of matrix A with no overlapping among the
diagonal blocks: each processor performs an ILU factorization only on a
square block centred on the main diagonal. This preconditioner does not
affect the final result obtained by using Bi-CGSTAB, even if it could affect
the number of iterations required.



The testing of the described numerical model has been extensively discussed
in Guj and Stella (1993) and Stella and Bucchignani (1996). The numerical
inaccuracies reported in meeting mass conservation and vorticity definition
had the same order of magnitude as the round-off error at each time step.

3.2 Time and space mesh sensitivity

The numerical code that we have used here was already validated: in Giangi et
al. (1998) a good comparison was described versus the solution computed by
Behnia and De Vahl Davis in Roux (1990) in the case of the flow here considered
at Pr = 0.015 and Gr = 20,000; in the case of the Rayleigh-Benard problem
accurate numerical flows were presented in Bucchignani (1997) and Stella and
Bucchignani (1998). Then, for costs reasons, we performed a test for mesh
sensitivity just assuming Gr = 100,000 with a configuration made up of a
large horizontal roll. Three grids have been used: 54 - 14 - 14, 81 - 21 - 21 and
131 - 31 - 31. The maximum values of the three components of velocity and the
average Nusselt number in the x direction have been chosen for comparison. As
proposed by de Vahl Davis (1983), Umax, Vmax and wyax are computed by
numerical differentiation through a fourth order polynomial approximation, for
better evaluation of the maximum values.

Results are reported in Table I. The convergence analysis indicates that the
method is nearly second order accurate in space. The grid 81 - 21 - 21 provides
a solution that is accurate enough for the purposes of this paper, so we assumed
that it could produce sufficient accuracy also for the other simulations at higher
values of Gr.

The time step sensitivity analysis has been executed on a two dimensional
problem. The results, reported in Stella and Bucchignani (1996) show that the
method is nearly second order accurate in time. This is due to the linearization
procedure where the second order correction to velocity and vorticity are neglected.

3.3 Fractal dimension of an attractor
The unsteady flows that we have obtained have been analyzed by means of the
nonlinear dynamic technique that is briefly described in the following.

As discussed in Bezé et al. (1984), the evolution of a dynamical system can be
described by means of a phase trajectory, which is a curve traced in the phase
space having as many dimensions as the number of degrees of freedom of the
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54-14-14 81-21-21 131-31-31
Upax 1.3175 1.3405 1.3522
Xy,2 201 0.25 0.600 2.05 0.227 0.575 2060 0.233 0.556
Vimax 0.6960 0.6995 0.7204
Xy,2 0.15 0.500 0.575 0.125 0400 0.562 0.100 0.350 0.559
Wnax 0.4395 0.4038 0.3926
X,y,2 0.125 0.700 0.850 0.125 0.675 0.860 0.125 0.675 0.860
Nu 1.6104 1.5992 1.5933

Table 1.
Mesh sensitivity
analysis: Gr = 100,000
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system. For dissipative systems, all the trajectories end on a geometrical object
called attractor.

The number of dimensions (d) of an attractor provides important
information about the kind of temporal regime that characterizes the system
under study. In fact, for a periodic regime, the attractor is a closed curve lying
in a plane (d = 1), for a quasi periodic regime with two incommensurate
frequencies the attractor is a toroidal surface (d = 2). If the temporal regime is
chaotic, the phase trajectories end on a strange attractor, which is characterized
by a number of dimensions larger than two and not necessarily integer: the
strange attractor is characterized by a fractal dimension.

On the basis of what we said above, it is simple to understand the importance
of measuring the dimension of an attractor. A purely geometric measure of the
structure of the attractor is supplied by the Hausdorff-Besikovich fractal
dimension D: given a set of points in a p-dimensional space, let N(e) be the
smallest number of hypercubes (of size €) needed to cover this set; D is defined as:

InN(e)
D= lim In(1/e)

However, D is difficult to calculate and impracticable for high dimensional
systems. For this reason the evaluation of the correlation dimension v has to be
preferred; it is related to D by the inequality v < D. In this work the procedure
proposed by Grassberger and Procaccia (1983) has been chosen, because it yields
accurate values, but it is not very heavy from a computational point of view. This
procedure can be summarized as follows:

(1) given a set of points lying on an attractor in the pseudo-phase space[1],
let N(7) be the number of points located in a hyper-sphere of radius 7: it
IsSN(7) x

(2) letus introduce the correlation function:
C ngrolc m2 Z H |)

in which H is the Heaviside function, defined in such a way that H = 1
if its argument 1s positive, 0 otherwise. In this way the sum indicates the
number of couples of points whose mutual distance is less than 7. It can
be shown that:

C(r) x N 7"

(3) once the curve C(7) has been traced in the plane(log C, log7), the slope
of it approximately yields the value of v. As the dimension p of the
pseudo-phase space is not known a priori, it is necessary to trace the
curve C(7) for several values of p, increasing p until the value of v does
not change more than p. If, as p grows, it results:



+ v — 1:the signal is periodic;
+ v — 2:the signal is quasi-periodic with two frequencies;

« v—k (k 1s a real number larger than 2): the signal is chaotic
(deterministic chaos);

v always growing with p: the signal is random (white noise).

4 Results

The numerical simulations have been executed in double precision on the SGI
Power Challenge super computer, installed in CIRA. It is a shared memory
multiprocessor machine with 4GB of physical memory and with 16 R10000
processors. A computational grid with 81-21-21 points (Ax = Ay =
Az = 0.05) has been chosen, while the time step has been set equal to 107>, as a
good compromise between time accuracy and computational resources. The
Prandtl number has been set equal to 0.015, while the Grashof number has been
varied in order to observe a series of transitions and bifurcations as this
parameter is increased. The following nomenclature has been adopted in order to
characterize the various temporal regimes:

+ S:steady state;

+ P:periodic regime with one fundamental frequency;

«  QP»: quasi-periodic regime with two incommensurate frequencies;

+  QP;5: quasi-periodic regime with three incommensurate frequencies;
« N:chaotic regime.

We have established the steady states by computing the Euclidean norm of the
relative difference of the velocity vectors at two consecutive time steps. The
chosen tolerance was 10~*. Furthermore, steady solutions have been randomly
perturbed (small perturbations) in order to check for stability.

Table II contains a summary of the most significant solutions obtained as a
function of the Grashof number. For the unsteady solutions, the quantities
reported in the table have been averaged over a long time interval. The first

Gr Regime Upax Vinax Winax Nu,

100,000 S 1.3405 0.6995 0.4038 1.5992
200,000 S 1.3863 0.7001 0.4066 2.1476
205,000 P 1.3864 0.7013 0.4067 2.1704
206,000 QP; 1.3865 0.7015 0.4067 2.1717
207,000 QP, 1.3865 0.7016 0.4067 2.1795
210,000 QP, 1.3867 0.7021 0.4069 2.1929
215,000 QPs/N 1.3892 0.7759 0.5092 2.2104
220,000 N 1.3913 0.8596 0.5188 2.2362
240,000 N 1.3867 0.8865 0.6650 2.2461
300,000 N 14171 0.9082 0.6242 2.5183
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Table II.
Configuration, regime,
maximum values of the
three velocity
components, Nusselt
number in the middle
plane normal to the

x axis
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Figure 2.

Case at Gr = 100,000:
(left) profile along v (x =
2,z = 0.5) of the u
velocity component,
(right) profile along x (v
=05,z = 0.5) of the v
velocity component

Figure 3.

Case at Gr = 100,000:
iso-u in the z-normal
middle plane

simulation has been executed at Gr = 100,000 starting from rest: a steady
solution, made up of a large horizontal roll (one-roll) has been found. Figure 2
shows the profile along y (x = 2,z = 0.5) of the # velocity component and the
profile along x (y = 0.5,z = 0.5) of the v velocity component. Figure 3 shows
the iso-# in the z-normal middle plane.

The second simulation has been executed at Gr = 200, 000, starting from the
solution obtained at Gr = 100, 000. Figure 4 shows the time history related to
the u velocity component at the point (0.4,0.75, 0.4): after a finite time interval
(0.4 non-dimensional units), the flow becomes steady.

The next simulation has been executed at G = 205000: as shown in Figure
5, after a finite time interval the flow becomes steady again. However, a small
random perturbation given on the vorticity field highlights that this is a false
steady state: in fact, after the perturbation, the flow becomes oscillatory
periodic with one fundamental frequency f1 = 11.104 (Figure 6), which is
accompanied by two harmonics (fo = 3 - f1, f3 = 5 f1).
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An increase in Gr at 206,000 causes the second Hopf bifurcation with a
transition to a quasi-periodic regime with two incommensurate frequencies.
Figure 7 shows the time history of the # velocity component at the point
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Figure 4.

Case at Gr = 200,000:
time history of the «
velocity component at
the point (0.4, 0.75, 0.4)

Figure 5.

Case at Gr = 205,000:
time history of the #
velocity component at
the point (0.4, 0.75, 0.4)
in the first time
interval (0-0.4)

[

20 40 60 80 1(f)0 120 140 160 180 200

Figure 6.

Case at Gr = 205,000:
(left) time history of the
u velocity component at
the point (0.4, 0.75, 0.4)
in the second time
interval (0.4-0.9), after
the perturbation, (right)
FFT of this signal. A
periodic regime with a
fundamental frequency
is observed
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Figure 7.

Case at Gr = 206,000:
(left) time history of the
u velocity component at
the point (0.4, 0.75, 0.4),
(right) FFT of this
signal. A quasi-periodic
regime with two
incommensurate
frequencies is observed

Figure 8.

Case at Gr = 206,000:
iso-u in the z-normal
middle plane at £ = 0.15

(0.4,0.75,0.4) related to the time interval 0 — 0.6 (60,000 samples are
available). In order to perform a Fourier analysis, this signal has been “filtered”
considering only 12,000 samples (one every five). A FFT executed on the last
213 samples (time interval [0.1994,0.6] highlights the presence of two main
frequencies (1 = 12.207 and f> = 51.269) accompanied by a large number of
harmonics. An analysis of the flow configuration shows that the one-roll
configuration is partially destroyed (Figure 8) only for a limited time interval
(0.15,0.2), but it is preserved successively. The flow remains quasi-periodic
even at Gr = 207,000 and at Gr = 210, 000, with slightly different values of
the main frequencies. We observe that the first main frequency increases its
value, while the second one decreases as G» grows (Table III).

At Gr = 215,000 a transition to a chaotic regime is observed. However, this
is not a direct transition and the presence of a quasi-periodic regime with three
incommensurate frequencies has been observed during the initial stage of this
simulation. As shown in Figure 9, the FFT executed on the time history of the «
velocity component highlights the presence of a third fundamental frequency
(i = 18.310, f» = 42.724, f3 = 67.138). However, a broadband noise, typical of
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the chaotic systems, is also observable. As explained in section 3.3, a better

Horizontal

characterization of the signal can be achieved by evaluating the fractal thermal
dimension of the attractor. Figure 10 shows the curves traced in the plane convection
(log C(7),log ) for increasing values (p =2,3,4...) of the embedding
dimension of the pseudo-phase space. The time delay 7 has been set equal to
100 - At. We can observe that the slope of the curves tends to become
independent on p and to stabilize on the value 3.72. This means that we are 191
dealing with a strange attractor.
Further increases in Gr, up to 300,000, do not cause significant changes in
the temporal regime, which remains chaotic. Figure 11 shows the iso-% in the z-
normal middle plane: a not regular fluid dynamics configuration can be
observed.
In conclusion, the bifurcation sequence observed is the following:
S— P — QPy(— QP3) - N
This is the well known Ruelle-Takens route, which has been already the subject
of theoretical as well as practical investigations. The present results allow us to
conclude that the Newhouse-Ruelle-Takens theorem (Newhouse et al., 1978) is
valid for the present problem; this theorem asserts that a torus 7°, under the
actions of some perturbations, degenerates to a strange attractor and therefore
the existence of three frequencies (i.e. three degrees of freedom) is a necessary
and sufficient condition for the onset of a chaotic regime. Other results agreeing
with these conclusions are shown in Guzman and Amon (1996) and
Gr f fy fi/f,
Table III.
206,000 12.207 51.269 4.199 Quasi-periodic regime
207,000 13.573 49.846 3.672 QP;: main frequencies
210,000 17.089 43.945 2.571 and their ratio
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Figure 10.

Case at Gr = 215,000:
evaluation of the fractal
dimension of the
attractor

Figure 11.

Case at Gr = 30,000:
iso-# in the z-normal
middle plane
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Bucchingnani and Stella (1998); on the other side, Gollub and Benson (1980), in
the Rayleigh-Benard convection, observed a stable three periodic regime for a
finite range of values of the control parameter (i.e. the Rayleigh number).

Conclusions
A numerical study of the unsteady horizontal thermal convection has been
executed. The physical system considered is a liquid metal (Pr = 0.015) in a
three-dimensional box 4-1-1 with a different temperature at the furthest
vertical walls.

Because many applications of material science, metereology, geology and
others are governed or strongly affected by this kind of flow, we think that it
deserves as much attention as its vertical counterpart, the Benard convection.
From the scientific viewpoint, we think that the last one has received much
more attention so far due to the possibility of starting the study from the easy
conduction state, that is a stable flow for sufficiently low Grashof numbers. In
fact in the literature, for the physical system considered here, we find a good
amount of mathematical and numerical results in the two-dimensional case



(just to mention some of them: Roux (1990); Winters (1988); Pulicani et al
(1990)); in three dimensions we know only a few published works on
mathematical treatments within restrictive hypothesis (Cormack et al, 1974;
Gershuni et al,, 1992; Georgescu and Mansutti, 1998; 1999) and on numerical
simulations (Mundrane and Zebib, 1993; Behnia et al., 1995; Giangi et al., 1998).
The goal of this work is the analysis of the transition from the steady flow to
the oscillatory periodic regime and the successive transition to chaos.

The study of this phenomenon requires a huge amount of computational
work and parallel computing resources: actually the transient regimes are very
lengthy and the resolution of the nonlinearities in the equations needs high
accuracy. In the present work the use of a parallel fully implicit approach
allowed us to obtain a significant quantity of numerical data in a reasonable
time.

We have considered the one-roll flow configuration and have detected three
Hopf bifurcations: the first one from steady to periodic regime with one
frequency at Gr = 205,000, the second one from periodic to quasi-periodic
regime with two incommensurate frequencies at G = 206, 000 and the third
one from quasi-periodic with two frequencies to quasi-periodic with three
frequencies at Gr = 215,000. The last regime being quite unstable rapidly
degenerates to chaos. A quantitative characterization of the chaotic regime has
been attained evaluating the fractal dimension of the attractors. In this
bifurcation sequence we recognize the Ruelle-Takens route to chaos, which has
already been observed in other physical systems, both numerically and
experimentally.

Comparing with the results in literature on the two-dimensional case, we
stress a significant difference: in two dimensions as Gr increases the flow
undergoes hysteresis cycle according to which the flow regime changes from
steady to periodic to quasi-periodic to steady again (Pulicani et al, 1990; Muller
and Neumann, 1983); in three dimensions we see the flow regime changing
from steady to periodic to quasi-periodic to chaotic. Such a difference suggests
that the three-dimensional effects are not at all negligible and the two-
dimensional studies seem to have a scarce applicability within real three-
dimensional problems.

As future work we shall slightly modify the physical system studied here
and consider an open top cavity with thermocapillary effects at the fluid/air
interface. The resulting flow is of interest for applications in microgravity
environments.

Note
1. For a scalar time series x(f)(¢, = k - At) the state vectors in the pseudo-phase space are
given by
Fty ={s(te,x(tr + 1), 2t + 27) ... x(tp + (p — 1)7)}
in which 7 is the time delay that is a multiple of Af.7 is chosen by the first zero of the

autocorrelation function and the embedding dimension p is increased until the invariant
property (fractal dimension) does not change.
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